TODAY'S WEBINAR AGENDA

- 3:00 pm: Introduction
- 3:05 pm: Presentation
- 3:45 pm: Questions
- 4:00 pm: Webinar Ends

For technical assistance during the webinar:

1-800-263-6317

Choose these prompts: 1, 1, 1

ASSOCIATION OF PEDESTRIAN & BICYCLE PROFESSIONALS

Expertise for Active Tra

CONTINUING EDUCATION

To document Professional Development Hours (PDH) or Certification Maintenance (CM) credit for the AICP:

- For group viewings: log your attendance on the host's sign-in sheet
 - Site hosts: return the completed sign-in sheet to APBP after the webinar (fax to 859-514-9188 or e-mail webinars@apbp.org)
- A Certificate of Attendance may be downloaded and printed at <u>www.apbp.org/webinar-downloads</u>
- **Planners**: APBP has applied to the AICP for 1.0 CM credits for this live webinar.

UPCOMING WEBINARS FROM APBP:

ОСТ	
20	

Defining the Relationship between Bicycle Infrastructure and Gentrification

Walking & Biking in Rural Communities: How Planning, Partnerships & Equity Play a Role Visit

www.apbp.org/webinars

to view webinar titles, full descriptions, and speakers for the 2021 series

City as a Canvas - How Three Florida Cities Approach Placemaking

ASSOCIATION OF PEDESTRIAN & BICYCLE PROFESSIONALS Expertise for Active Transportation

YOUR VOICE MATTERS!

Please provide feedback on the Equity & Inclusion survey by September 22.

Your input will help APBP shape our equity and inclusion efforts going forward!

apbp.org > Committees > Equity and Inclusion Task Force

ASSOCIATION OF PEDESTRIAN & BICYCLE PROFESSIONALS

THANK YOU TO OUR GENEROUS SPONSORS

SUPPORTER LEVEL

ASSOCIATION OF PEDESTRIAN & BICYCLE PROFESSIONALS Expertise for Active Transportation

LINEWORK, MODELS, COUNTERS... OH MY: A UTAH STORY OF MULTI-AGENCY COLLABORATION TO DEVELOP ACTIVE TRANSPORTATION DATA AND TOOLS

SEPTEMBER 15, 2021

For technical assistance during the webinar: Call 1-800-263-6317 Choose audio prompts: 1, 1, 1

TODAY'S WEBINAR PRESENTERS

Stephanie Tomlin Utah Department of Transportation (UDOT)

Stephanie Tomlin is the GIS, Data, and Modeling Program Manager for the central planning group at the Utah Department of Transportation (UDOT). Stephanie specializes in active transportation data analytics, multi-modal transportation planning and the integration of big data in planning initiatives. Stephanie also manages the UDOT Transportation Investment Fund program models. These models are used to prioritize projects for funding throughout the state annually. Stephanie is the current Board Chair of Bike Utah.

ASSOCIATION OF PEDESTRIAN & BICYCLE PROFESSIONALS Expertise for Active Transportation

TODAY'S WEBINAR PRESENTERS

Bert Granberg Wasatch Front Regional Council (MPO)

Bert Granberg leads the Analytics Group at Wasatch Front Regional Council, the metropolitan planning organization (MPO) for the Salt Lake City, Ogden Layton urban area. Previous appointments include directing Utah's state GIS office (UGRC) and serving on the National Geospatial Advisory Committee.

TODAY'S WEBINAR PRESENTERS

Ben Stabler RGS

Ben Stabler is a Senior Director at RSG and specializes in transportation modeling and software development. He has 20 years of industry experience and previously worked in software development for PTV and in transport modeling for the Oregon Department of Transportation.

Linework, Models, Counters... OH MY

A Utah Story of Multi-Agency Collaboration to Develop Active Transportation Data and Tools

> Association of Pedestrian and Bicycle Professionals Webinar Series September 15th, 2021

Bert Granberg | Wasatch Front Regional Council

WASATCH FRONT REGIONAL COUNCIL

Stephanie Tomlin | Utah Department of Transportation

Keeping Utah Movin

Ben Stabler | Resource Systems Group

Stephanie Tomlin UDOT

Data, Modeling, and GIS Program Manager Ben Stabler RSG, Inc.

Presenters

Senior Director

Bert Granberg, WFRC

Analytics Director

Geographic Context:

Wasatch Front Metropolitan Planning Organizations:

WFRC
 Salt Lake City - Ogden area
 ~55% of Utahns

MAG
 Provo - Orem area
 ~20% of Utahns

Wasatch Front Regional Council (WFRC) Pop. 1,867,000 (2021 est.)

Mountainland (MAG) Pop. 673,000 (2021 est.)

The Story:

Gooddata =

Good planning =

Funding for projects

Starting in 2016 Roughly \$150,000 and 1,500 hours annually invested between agencies on AT data the work we are going to highlight

Linework Utah Bike Demand Model Observed Data

Learning Objectives

- Innovative active transportation data developments and tools that are happening in the state of Utah
- Agency collaboration is critical in data and tool development
- Utah has leveraged these data and tools to fund and construct projects

Challenge: Inventorying Active Transportation System

- Partial network, maturing quickly
- Regional network, but tracked only at local level, and only by some
- Presenting existing and planned networks
- Identifying gaps and projects
- Prioritizing, phasing, and funding projects
- Bike focus, pedestrian, or multi-use?

Challenge: Inventorying Active Transportation System

- Partial network, maturing quickly
- Regional network, but tracked only at local level, and only by some
- Presenting existing and planned networks
- Identifying gaps and projects
- Prioritizing, phasing, and funding projects
- Bike focus, pedestrian, or multi-use?

-- AT is real infrastructure, we should map it and plan for it like we do other modes

Key Linework Decision Points

Stewardship: authoritative or shared?

Who's in the partnership for collaboration and funding?

Standardized data structure?

Access to data: who, when?

Types of users?

Overlapping & conflicting plans

Bike or pedestrian focus?

Investment path: existing inventory? planned projects? observed travel behavior? travel models? Data management platform?

Data refresh cycle?

2004	2010	2016	2017	2018	2019	2020	2021
Utah state	ewide road c	centerlines (IS layer				

2004	2010	2016	2017	2018	2019	2020	2021
Utah state	wide road o	enterlines (GIS layer				
		Utah statev	vide trails/p	oathways G I	S layer & d	ata model	

	2004	2010 2016	20	017	2018	2019	2020	2021	
I	Utah statewid	e road centerlines	s GIS la	ayer			_		
		Utah stat	ewide	trails/p	oathways GIS 1	ayer & da	ata model		
20	Category/Grouping	Field Definitions				Coded	Values		
21		FieldName	Type	Length	AliasName	Code	Name		1000
22	High Utility General	STATUS	String	15	ConstructedStatus	1A 1B	1A Cycle track	, at-grade, protected with	parking
23		CARTOCODE	String	10	CartographicCode	10	1C Cycle track	c, raised and curb separat	ed (may be n
. 24	Addressing	FULLNAME	String	50	FullName	2A	2A Buffered bi	ke lane	
47	Placename/Area	STATE L	String	2	StateLeft	2B	2B Bike lane	1	
63	Legacy 911 Coding (or	ptional) ER CAD ZONES	TBD	TBD	TBD	3A 3B	3A Shoulder b 3B Marked sh	ared roadway	
68	Routing	ONEWAY	String	1	OneWayCode	3C	3C Signed sha	ared roadway	
74	DOT/FHWA	DOT HWYNAM	String	15	DOTHighwayName	1	1 Cycle track,	unspecified	
87	Alternate Use	BIKE L	String	4	ExistingBikeFeaturel e	eft 2	2 Bike lane, ur	specified	
88		BIKER	String	4	ExistingBikeFeatureRig	aht PP	Parallel Bike F	Path, Paved	
89		BIKE PIN I	String	4	BikePlanl eft	PU	Parallel Bike F	Path, Unpaved	
90		BIKE PIN R	String	4	BikePlanRight	UN	Unknown Cate	egory	
91	-	BIKE REGPR	String	5	BikeRegionalPriority			m	
92		BIKE NOTES	String	50	BikeNotes	+ ≣	CVDomain_OnStreet	Bike 🔹 🕨	
93		PED I	String	25	Pedestrian Left				
94		PED R	String	25	Pedestrian Right			<u>roads data mod</u>	<u>el link</u>
95	Data Lineage	UNIQUE_ID	String	75	UniqueID		<u>trails/pa</u>	<u>thways data mod</u>	<u>el link</u>

Active Transportation GIS Layers

UTRANS GIS Database

- Hosted by <u>UGRC</u> (state GIS office)
- Multiuser editing using Esri AGS/SDE
 - County road updates
 - UDOT updates
 - MPO updates

- Layers updated & published monthly
- Monthly rebuild of Multimodal Network analysis dataset

2004	2010		2016	2017	2018	2019	2020	2021
Utah state	ewide roa	d ce	nterlines (GIS layer				
		U	tah statev	vide trails/p	oathways G I	S layer & d	ata model	
					A	erial photo	review	
					K	ey densific	ation	
					N	Iultimodal	Network &	updates
					S	tatus ="pla	nned"	
						Stakeholders workshop		
						Bi	ke model d	ev

ATGIS Dataset

- Bike & pedestrian facilities
- Onstreet & multiuse pathways
- Existing network
- Planned network

 Existing + planned future network
 <u>map link</u>

Utah's Unified Transportation Plan

• Phased AT project linework rolls up from MPO and UDOT long range plans

<u>Utah's Unified Plan link</u>

Utah Bike Demand Model.

Micromobility Model Kickoff Survey, Workshop & Work Plan

- Bike mode focus
- Estimate present usage,by trip type
- Compare project set scenarios
- Custom, open source platform, *informed by others' work*

workshop summary link model dev work plan link

Key takeaways from the stakeholder survey include:

Toolset should provide micromobility demand estimates/forecast to assist with:

- Project prioritization
- First mile/last mile transit analysis
- Understanding network- and land use-related impacts

Survey Summary: Information the Toolset Should Provide

Acknowledgements - Valuable Starting Points

Initial model estimation HTS (SACOG, Sacramento MPO)

Bike model base code (AMBAG, Monterey MPO)

Generalized bike — travel costs (LA DOT)

Thank you !!!

Utah Bike Demand Model Components

Prepare Network	Prepare Microzones	Trip-based Model*	Output Processing
GIS Road Centerlines with Left/Right Bike Facilities GIS Multi-use Pathways Key Attributes: Bike Facility Types Comfort Levels (traffic volumes) Elevation Change Signal Intersections	Create 'Blocks' from Roads Key Attributes: Demographics, Income Job Count By Sector Job Count By Sector Park Score, Trailhead, & Transit station presence School & College Enrollment, Dorms Jobs/Housing Mix	 3 Step Model Trip Generation Destination Choice Network Assignment → Segment Volumes → Trip Production & Attraction (Origins & Destinations) 	Total trips, BMT GIS Polylines → Segment-level Volumes GIS Polygons → Origin/Destination <i>by trip purpose type</i> - Trips Production - Trips Attracted
		*a.k.a. Micormobility Toolset	

Input Prep & Config GitHub Code Repository

Esri arcpy

y python only

Trip-Based Model GitHub Code Repository

Utah Bike Demand Model Input Examples

Bike & Roadway Facilities

Job Density (by microzone)

Average Slope (directional)

Utah Bike Demand Model Result Examples

• est. 1,395,766 daily bike miles (~0.6 mi /person)

Utah Bike Demand Model Result Examples

• daily trip sum: 256,689 trips (~0.1 /person)

Trip Purposes -- and Parameters Used

	Discretionary	Maintenance	Rec- Family	Rec-LongDist	Rec-Other	School K-12	College	Work
Trip Generation - <u>Zone</u> Attributes	Income 75-100 Income 0-25 Age Group 1 Age Group 3	Income 75-100 Income 0-25 Age Group 1 Age Group 3	Income 75-100 Income 0-25	Income 75-100 Income 0-25	Income 75-100 Income 0-25 Pop Life Cycle 2	Income 75-100 Income 0-25	Income 75-100 Income 0-25 Age Group 1 Age Group 3	Income 75-100 Income 0-25 Age Group 1 Age Group 3
Trip Generation - <u>Buffer</u> Attributes	Mixed Use Score	College Enrollment Mixed Use Score	Enrollment Elem Enrollment Middle Enrollment High	Households Trailhead Score	Park Score	Enrollment Elem Enrollment Middle Enrollment High	College Enroll	Job Sector 3 Job Sector 4 Job Sector 5 Job Sector 6
Destination Choice - <u>Zone</u> Attributes	Households Job Sector 3 Job Sector 7 Job Sector 9	Job Sector 4 Job Sector 7 Job Sector 6 Job Sector 9 Households Enrollment Elem Enrollment Middle Enrollment High	Households Enrollment Elem Enrollment Middle Enrollment High Park Score	Trailhead Score Park Size	Park Score	Jobs Sector 3 Enrollment Elem Enrollment Middle Enrollment High	College Enroll	Total Jobs Job Sector 3

Model Design Technical Document

Bike Network Cost Coefficients

Variable	Additional Distance (miles)	Notes
Turn	0.034	Presence of a turn
Stop sign	0.0037	Presence of a stop sign
Traffic Signal	0.017	Presence of a traffic signal
Parallel traffic L heavy	0.18	left turn parallel to heavy traffic; 20k+ AADT
Cross Traffic LS med	0.05	left turn or straight across medium traffic; 10-20k AADT

Variable	Length Multiplier	Notes
distance	1	default
Bike blvd	-0.108	Bike class = 3b, 3c
Bike path	-0.16	Bike class = 1a, 1b, 1c, 1
Bike lane light	0	Bike class = 2a, 2b, 2, 3a and light traffic
Bike lane heavy	1.65	Bike class = 2a, 2b, 2, 3a and heavy traffic
No Bike lane heavy	7.157	Heavy traffic
Slope 2-4 percent	0.371	Percent slope (moderate hill)
Slope > 6 percent	3.239	Percent slope (steep hill)

Scenario Comparison - 3900 South Bike Facility Upgrade

the Project Area

Scenario Comparison - 3900 South Bike Facility Upgrade

the Project Area

Scenario Comparison - 3900 South Bike Facility Upgrade

Vest Valley City lav 68 wuita

Winner and Losers

Bike Model v1.0 – Now What?

- Continue to explore model use for :
 - Volume estimates
 - Project scenarios
- 2021-22 model enhancements
- Incorporate "Bike-ability" into main Travel Demand Model
- Re-estimate and calibrate with Wasatch Front behavioral data
 - 2022-2023 household travel survey
 - Observed count program
- Seek additional collaborators

Observed Data.

Counter Data Strava Data Expansion What's Next...

State of the Counters Across the Wasatch Front

- Agency/Jurisdiction led
- Initial effort to work together but ran into funding difficulties
- Partial picture is valuable but we know it's flawed

Wasatch Front Counter Locations

State of the Counters Across the Wasatch Front

- Snapshots in time at specific locations
- Good for making a high level assessment of AT usage at specific locations
- Don't necessarily show trends on the <u>whole system</u>

Comparison of Trail Usage During April of 2019 and 2020

Meanwhile, going on elsewhere at UDOT

Hourly traffic volumes

Bin

- AADT
- Speed
- Peak hour volumes
- Collisions
- Forecasts
- Etc....

esri

Strava Data

- Strava data purchase starting in 2016-4 agencies paying in
- Volumes everywhere limited sample size

2020 Strava Data - Ride Heatmap

Strava in Action

Cottonwood Heights; Utah

- High recreation area
- High strava recorded volumes
- UDOT roadway

AFTER

But we knew that we still weren't seeing the whole story...

Expansion Effort

Expansion Effort - Data Inputs

2019 Strava Ride Activity by Segment

Counter Locations

Additional Data:

- Literature review
- Counter user group
- Bike Demand Model

Expansion Effort - Data Processing

- Counter data were summarized by daily average by month for each location
- The Strava data were similarly summarized by monthly count totals for each location

Expansion Effort - Data Analysis

 Most – but not all – of the locations have a <u>linear relationship</u>, indicating a consistent percent of Strava users on a given facility Count Volume Compared to Strava Volumes, By Month for Each Location

Expansion Effort - Data Analysis

- Most locations have very high correlation coefficients when looking at the variation by month between the count data and the Strava data.
- The percent of Strava users at each location varies considerably.

Count Locations and Correlation Coefficients

	CORRELATION			
COUNT LOCATION	Monthly Total	Daily Average by Month		
6th E 1300 S	95%	95%		
7173-Vineyard	95%	92%		
Jordan River Trail @ Fisher Mansion (175 S)	98%	98%		
4239-JRP Lehi 2100N	96%	96%		
JRT @ 1800 N	93%	93%		
4050-JRP RC Airplane Park	93%	93%		
3741-CCT Orem 800E	95%	95%		
3738-MCT Orem 1600 N	99%	99%		
3737-MCT Lindon 400N	97%	97%		
3739-MCT Highland Canterbury Dr	97%	97%		
S-Line Trail / Parley's Trail near 800 East	97%	97%		
Trail Counter by 5400S	93%	94%		
9-Line / Sunnyside Trail @ 1750 East	99%	99%		
3742-MCT PG 1100N (Wade Springs)	73%	68%		
4238-Mapleton Lateral Canal Trail	99%	99%		
3743-MCT Lehi 1200W	64%	67%		
Trail Counter by 4700S	98%	96%		
300 S 150 W	99%	98%		

Average Monthly Percentage of Strava Users at Each Location

Expansion Effort - Results

- Average percent of bicyclists at each count location using Strava varied considerably = limited predictive value
- A simple method to extrapolate the Strava data broadly is not yet identified
 - The close relationship between Strava volumes and observed counts = Noteworthy!
- Significantly more count locations are needed to derive reliable estimates of usage patterns

What's Next

- Collaboration to understand regional cross agency biking patterns
- Central repository of comprehensive, good observed AT volumes estimates
- Located where we need them not based on jurisdiction or where it's easy
- Now also investigating StreetLight active transportation modes offering

Takeaways.

- AT is real infrastructure, we should map it, and plan for it like we do other modes.
- Mature AT resources many in GIS facilitate discussion and agreement on existing conditions, needs, and priorities.
- Good data doesn't happen by accident!
- When we work together our collective investment goes further.

Thank you!

Questions?

satomlin@utah.gov

bgranberg@wfrc.org

Ben.Stabler@rsginc.com

THANK YOU TO OUR GENEROUS SPONSORS

SUPPORTER LEVEL

ASSOCIATION OF PEDESTRIAN & BICYCLE PROFESSIONALS Expertise for Active Transportation

THANK YOU FOR ATTENDING

Please take a short survey to tell us what you think about today's presentation.

A link to the survey will be e-mailed to the site host. If you're the host, please forward the link to anyone who attended in the webinar at your site.

Return your sign in sheets promptly!

